IBM Solar Collector Magnifies Sun By 2000X – These Could Provide Power To The Entire Planet | Collective-Evolution

A team at IBM recently developed what they call a High Concentration Photo Voltaic Thermal (HCPVT) system that is capable of concentrating the power of 2,000 suns, they are even claiming to be able to concentrate energy safely up to 5,000X, that’s huge. The process of trapping the sunlight produces water that can be used to produce filtered drinkable water, or used for other things like air conditioning etc. Scientists envision that the HCPVT system could provide sustainable energy and fresh water to communities all around the world.

IBM Solar Collector Magnifies Sun By 2000X – These Could Provide Power To The Entire Planet | Collective-Evolution

A team at IBM recently developed what they call a High Concentration Photo Voltaic Thermal (HCPVT) system that is capable of concentrating the power of 2,000 suns, they are even claiming to be able to concentrate energy safely up to 5,000X, that’s huge. The process of trapping the sunlight produces water that can be used to produce filtered drinkable water, or used for other things like air conditioning etc. Scientists envision that the HCPVT system could provide sustainable energy and fresh water to communities all around the world.

IBM Solar Collector Harnesses the Power of 2,000 Suns | Inhabitat - Sustainable Design Innovation, Eco Architecture, Green Building 
A team of IBM researchers is working on a solar concentrating dish that will be able to collect 80% of incoming sunlight and convert it to useful energy. The High Concentration Photovoltaic Thermal system will be able to concentrate the power of 2,000 suns while delivering fresh water and cool air wherever it is built. As an added bonus, IBM states that the system would be just one third the cost third of current comparable technologies. Based on information by Greenpeace International and the European Electricity Association, IBM claims that it would require only two percent of the Sahara’s total area to supply the world’s energy needs. The HCPVT system is designed around a huge parabolic dish covered in mirror facets. The dish is supported and controlled by a tracking system that moves along with the sun. Sun rays reflect off of the mirror into receivers containing triple junction photovoltaic chips, each able to convert 200-250 watts over eight hours. Combined hundred of the chips provide 25 kilowatts of electricity.
The entire dish is cooled with liquids that are 10 times more effective than passive air methods, keeping the HCPVT safe to operate at a concentration of 2,000 times on average, and up to 5,000 times the power of the sun. The direct cooling technique is inspired by the branched blood supply system of the human body and has already been used to cool high performance computers like the Aquasar. The system will also be able to create fresh water by passing 90 degree Celsius liquid through a distillation system that vaporizes and desalinates up to 40 liters each day while still generating electricity. It will also be able to amazingly offer air conditioning by a thermal drive absorption chiller that converts heat through silica gel.
Replacing expensive steel and glass with concrete and pressurized foils, the HCPVT is less costly than many other similar installations. Its high tech coolers and molds can be manufactured in Switzerland, and construction provided by individual companies on-site. Through their design, IBM believes they can maintain a cost of less than 10cents per kilowatt hour.
 
 


IBM Solar Collector Harnesses the Power of 2,000 Suns | Inhabitat - Sustainable Design Innovation, Eco Architecture, Green Building

A team of IBM researchers is working on a solar concentrating dish that will be able to collect 80% of incoming sunlight and convert it to useful energy. The High Concentration Photovoltaic Thermal system will be able to concentrate the power of 2,000 suns while delivering fresh water and cool air wherever it is built. As an added bonus, IBM states that the system would be just one third the cost third of current comparable technologies.

 
Based on information by Greenpeace International and the European Electricity Association, IBM claims that it would require only two percent of the Sahara’s total area to supply the world’s energy needs. The HCPVT system is designed around a huge parabolic dish covered in mirror facets. The dish is supported and controlled by a tracking system that moves along with the sun. Sun rays reflect off of the mirror into receivers containing triple junction photovoltaic chips, each able to convert 200-250 watts over eight hours. Combined hundred of the chips provide 25 kilowatts of electricity.

The entire dish is cooled with liquids that are 10 times more effective than passive air methods, keeping the HCPVT safe to operate at a concentration of 2,000 times on average, and up to 5,000 times the power of the sun. The direct cooling technique is inspired by the branched blood supply system of the human body and has already been used to cool high performance computers like the Aquasar. The system will also be able to create fresh water by passing 90 degree Celsius liquid through a distillation system that vaporizes and desalinates up to 40 liters each day while still generating electricity. It will also be able to amazingly offer air conditioning by a thermal drive absorption chiller that converts heat through silica gel.

Replacing expensive steel and glass with concrete and pressurized foils, the HCPVT is less costly than many other similar installations. Its high tech coolers and molds can be manufactured in Switzerland, and construction provided by individual companies on-site. Through their design, IBM believes they can maintain a cost of less than 10cents per kilowatt hour.

 

 

(via phroyd)