Google and NASA Launch Quantum Computing AI Lab
Quantum computing took a giant leap forward on the world stage today as NASA and Google, in partnership with a consortium of universities, launched an initiative to investigate how the technology might lead to breakthroughs in artificial intelligence.
The new Quantum Artificial Intelligence Lab will employ what may be the most advanced commercially available quantum computer, the D-Wave Two, which a recent study confirmed was much faster than conventional machines at defeating specific problems. The machine will be installed at the NASA Advanced Supercomputing Facility at the Ames Research Center in Silicon Valley and is expected to be available for government, industrial, and university research later this year.
Google believes quantum computing might help it improve its web search and speech recognition technology. University researchers might use it to devise better models of disease and climate, among many other possibilities. As for NASA, “computers play a much bigger role within NASA missions than most people realize,” says quantum computing expert Colin Williams, director of business development and strategic partnerships at D-Wave.

Google and NASA Launch Quantum Computing AI Lab

Quantum computing took a giant leap forward on the world stage today as NASA and Google, in partnership with a consortium of universities, launched an initiative to investigate how the technology might lead to breakthroughs in artificial intelligence.

The new Quantum Artificial Intelligence Lab will employ what may be the most advanced commercially available quantum computer, the D-Wave Two, which a recent study confirmed was much faster than conventional machines at defeating specific problems. The machine will be installed at the NASA Advanced Supercomputing Facility at the Ames Research Center in Silicon Valley and is expected to be available for government, industrial, and university research later this year.

Google believes quantum computing might help it improve its web search and speech recognition technology. University researchers might use it to devise better models of disease and climate, among many other possibilities. As for NASA, “computers play a much bigger role within NASA missions than most people realize,” says quantum computing expert Colin Williams, director of business development and strategic partnerships at D-Wave.

A Big Step Toward a Silicon Quantum ComputerQuantum computers could more easily become a reality if they incorporated the silicon semiconductor processing used by the modern electronics industry. Physicists in Australia have recently taken a new step toward that vision by reading and writing the nuclear spin state of a single phosphorus atom implanted in silicon.In a breakthrough reported in the 18 April edition of the journal Nature, physicists have finally achieved an idea first proposed in 1998 by Bruce Kane, a physicist at the University of Maryland, in College Park. Such success could lead to quantum computers based on the same silicon-processing technology used for computer chips.“What we are trying to do is demonstrate that there is a viable way to take the same physical platform and fabrication technology used to make any computer and mobile phone in the world, and twist it into a technology for quantum information processing,” says Andrea Morello, a quantum physicist at the University of New South Wales, in Australia.Scientists envision quantum computers as the ideal devices for cracking modern encryption codes, searching through huge databases, and understanding the biological interactions of molecules and drugs. Quantum computing’s potential comes from harnessing the laws of quantum physics that allow the spin state of an electron or an atom’s nucleus to achieve “superposition”—existing in more than one state at a time. A classical computer bit can exist either as a 1 or a 0, but a quantum bit, or qubit, is capable of existing in multiple states at the same time.With other quantum computing approaches, researchers have tried trapping and isolating atoms by using electromagnetic fields or superconductor materials. By comparison, Kane suggested harnessing the nuclear spin of phosphorus atoms embedded in a silicon crystal as a qubit.Silicon-based quantum computing also offers long coherence times for electron and nuclear spins, Kane says. That means the electron spin states and nuclear spin states acting as qubits could hold on to their information for long periods of time, something that other quantum computing schemes have struggled with.
Read more.

A Big Step Toward a Silicon Quantum Computer

Quantum computers could more easily become a reality if they incorporated the silicon semiconductor processing used by the modern electronics industry. Physicists in Australia have recently taken a new step toward that vision by reading and writing the nuclear spin state of a single phosphorus atom implanted in silicon.

In a breakthrough reported in the 18 April edition of the journal Nature, physicists have finally achieved an idea first proposed in 1998 by Bruce Kane, a physicist at the University of Maryland, in College Park. Such success could lead to quantum computers based on the same silicon-processing technology used for computer chips.

“What we are trying to do is demonstrate that there is a viable way to take the same physical platform and fabrication technology used to make any computer and mobile phone in the world, and twist it into a technology for quantum information processing,” says Andrea Morello, a quantum physicist at the University of New South Wales, in Australia.

Scientists envision quantum computers as the ideal devices for cracking modern encryption codes, searching through huge databases, and understanding the biological interactions of molecules and drugs. Quantum computing’s potential comes from harnessing the laws of quantum physics that allow the spin state of an electron or an atom’s nucleus to achieve “superposition”—existing in more than one state at a time. A classical computer bit can exist either as a 1 or a 0, but a quantum bit, or qubit, is capable of existing in multiple states at the same time.

With other quantum computing approaches, researchers have tried trapping and isolating atoms by using electromagnetic fields or superconductor materials. By comparison, Kane suggested harnessing the nuclear spin of phosphorus atoms embedded in a silicon crystal as a qubit.

Silicon-based quantum computing also offers long coherence times for electron and nuclear spins, Kane says. That means the electron spin states and nuclear spin states acting as qubits could hold on to their information for long periods of time, something that other quantum computing schemes have struggled with.

Read more.

(via emergentfutures)

Lockheed Martin Harnesses Quantum Technology - NYTimes.com
A powerful new type of computer that is about to be commercially deployed by a major American military contractor is taking computing into the strange, subatomic realm of quantum mechanics. In that infinitesimal neighborhood, common sense logic no longer seems to apply. A one can be a one, or it can be a one and a zero and everything in between — all at the same time.
It sounds preposterous, particularly to those familiar with the yes/no world of conventional computing. But academic researchers and scientists at companies like Microsoft, I.B.M. and Hewlett-Packard have been working to develop quantum computers.

Lockheed Martin Harnesses Quantum Technology - NYTimes.com

A powerful new type of computer that is about to be commercially deployed by a major American military contractor is taking computing into the strange, subatomic realm of quantum mechanics. In that infinitesimal neighborhood, common sense logic no longer seems to apply. A one can be a one, or it can be a one and a zero and everything in between — all at the same time.

It sounds preposterous, particularly to those familiar with the yes/no world of conventional computing. But academic researchers and scientists at companies like Microsoft, I.B.M. and Hewlett-Packard have been working to develop quantum computers.

It’s (Quantum Computing) one of our most significant fundamental research projects now, and may be one of the largest fundamental ones,

Quote by Bill Gallagher, Senior Manager of Quantum Computing, IBM Research.  Quote found in an online Computerworld article titled  “IBM’s new future: Quantum computing”

(via horizonwatching)

IBM Research Announces New Advances in Quantum Computing

Quantum computing has been a Holy Grail for researchers ever since Nobel Prize-winning physicist Richard Feynman, in 1981, challenged the scientific community to build computers based on quantum mechanics. For decades, the pursuit remained firmly in the theoretical realm. But now IBM scientists believe they’re on the cusp of building systems that will take computing to a whole new level.

(by IBMLabs)

The Future of Computing — Reuniting Bits and Atoms

via itspogilvy: